Category: CMS-Research

UCO Professors Collaborate on U. of Kansas NSF EPSCoR Grant

Drs. Robert Brennan and Sean Laverty are part of a multi-institutional NSF EPSCoR grant to research tick-borne diseases including Lyme disease and Rocky Mountain spotted fever. The four-year $3,921,229 grant, “Marshalling Diverse Big Data Streams to Understand Complexity of Tick-borne Diseases in the Southern Great Plains,”  is a collaboration among six universities in Kansas and Oklahoma, with the University of Kansas (KU) serving as the lead institution. Along with KU and UCO, the consortium includes Kansas State University, Pittsburgh State University, Oklahoma State University and the University of Oklahoma. According to the project abstract, major components of the research include assembling detailed large-scale datasets on the occurrences of different tick species, genomes of the ticks and pathogens, and environmental variation across the region. Dr. Brennan, biology professor, director of the Center for Interdisciplinary Biomedical Education and Research (CIBER) and associate dean of the UCO College of Mathematics and Science, serves as a Co-Principal Investigator on the grant. Dr. Laverty, associate professor of mathematics and statistics and CIBER member, will provide data analysis.  

 

CMS Faculty Receive OK-INBRE Grants

Three CMS faculty have received OK-INBRE grants totaling $189,160 for the 2020-2021 academic year.

Dr. Mohammad Hossan, Associate Professor of Engineering & Physics, received a Research Principal Investigator grant for $189,160. His project “Flow Analysis of a Bioresorbable Pipeline Embolization Device for Treatment of Aneurysms,” involves the design and development of bioresorbable pipeline embolization devices (PEDs) that will control aneurysm-specific hemodynamic parameters and degrade after completely dissolving the aneurysm.

Dr. Hari Kotturi, Professor of Biology, received a $31,389 grant for his project, “Incorporation of Mycobacteriophages in Electrospun Nanofiber.” The goal of the study is to develop an antimicrobial dressing by incorporating bacteriophages that can kill Mycobacterium abscessus, a common causative agent of soft tissue infections in hospitals. Dr. Kotturi’s research team will be able to enhance the antimicrobial property of polycaprolactone/collagen I (PCL/Col I) nanofiber by integrating mycobacteriophages into the nanofiber used as a wound dressing.

Dr. Christina Hendrickson, Coordinator of the Human Physiology Lab in the Department of Biology, was funded $27,083 for her project, “Investigating Anti-carcinogenic Effects of Taraxacum officinale.” The specific aims of the research are to: determine cancer cell viability and apoptosis; determine whether cancer cell apoptosis is activated by intrinsic or extrinsic pathways, and whether leakage of pro-apoptotic factors from mitochondria or induction of oxidative stress on cancer cells are involved in induced cell death; and determine cancer cell migration and invasion.

Simulation of Flow in Porous Media

Note, energy production is not the only application of this project. One application that could be simulated in a similar fashion would be modeling of sequestration of greenhouse gases such as CO2 in the rock formations of interest in energy production.  

 

In this project we aim to improve understanding of flow characteristics in a variety of media types under a range of flow conditions that are observed in production environments. The results will be of use in predicting the production value of reservoirs. 

Effects of Non-symmetric Flow Rates on Fluid Mixing in a Micromixer

We are studying the effects of a mixing two anti-parallel fluid streams with different flow rates to determine the flow rate ratios at particular flow speeds that will improve mixing in micromixers.. There are many applications of micromixers in chemical detection and in biomedical detectors and other devices. The false color plot above uses blue to represent one unmixed fluid and red to represent the other. Other colors indicate various degrees of mixing. This work was supported by National Science Foundation grant ACI-#1429702.

Understanding Turbulence in Active Microscale Mixers

We are studying the effects of a variable electric field to drive mixing in a micromixer and the possible generation of turbulence in the process. Iso-surfaces of velocity are shown here, where blue indicates a low speed and red a high speed. We are also examining entropy generation rates due to advection and diffusion to understand the interplay of irreversibility increase due to entropy generation and improved mixing. This work is supported by National Science Foundation grant ACI-#1429702.